Dynamic admittance of carbon nanotube-based molecular electronic devices and their equivalent electric circuit
نویسندگان
چکیده
We use first-principles quantum mechanics to simulate the transient electrical response through carbon nanotube-based conductors under time-dependent bias voltages. The dynamic admittance and time-dependent charge distribution are reported and analyzed. We find that the electrical response of these two-terminal molecular devices can be mapped onto an equivalent classical electric circuit and that the switching time of these end-on carbon nanotube devices is only a few femtoseconds. This result is confirmed by studying the electric response of a simple two-site model device and is thus generalized to other two-terminal molecular electronic devices. (Some figures in this article are in colour only in the electronic version)
منابع مشابه
Electronic band structure of a Carbon nanotube superlattice
By employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (CNT) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. Exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. The calculations are base...
متن کاملElectronic band structure of a Carbon nanotube superlattice
By employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (CNT) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. Exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. The calculations are base...
متن کاملVectorial Growth of Metallic and Semiconducting Single-Wall Carbon Nanotubes
A new approach for vectorial growth of single-wall carbon nanotube arrays is presented. The origin of growth is defined by patterning the catalyst nanoparticles, while the direction of growth is defined by a local electric field parallel to the substrate. Statistical analysis of the nanotube angular distribution indicates that field-directed growth can discriminate between metallic and semicond...
متن کاملBulk carbon nanotube as thermal sensing and electronic circuit elements
Bulk multi-walled carbon nanotube (MWNT) were successfully and repeatably manipulated by AC electrophoresis to form resistive elements between Au microelectrodes and were demonstrated to potentially serve as novel temperature sensor and simple electronic circuit elements. We have measured the temperature coefficient of resistance (TCR) of these MWNT bundles and also integrated them into constan...
متن کاملModeling of carbon nanotube ultracapacitor
Modeling of carbon nanotube ultracapacitor (CNU) performance based on simulation of electrolyte ion motion between cathode and anode is described. Using a molecular dynamics (MD) approach, the equilibrium positions of electrode charges interacting through Coulomb potential are determined, which in turn yield the equipotential surface and electric field associated with the capacitor. With an app...
متن کامل